






FIG 7 Identification of the CP domain required for specific subcellular localization. (A) CP mutants were fused to GFP as shown in Fig. 5A to C. The indicated
GFP-tagged CP mutants were expressed in N. benthamiana leaves by agroinfiltration. The GFP signals were observed in the epidermal cells using confocal
microscopy at 3 dpi. Bar, 15 �m. (B and C) Prediction of the TMD (B) and the hydrophobic domain (C) of FHV CP. The TMHMM v.2 and ProtScale (the Kyte
and Doolittle method) programs were used to predict the TMD and the hydrophobicity of CP, respectively. (D) Binary plasmids designed to express CP
containing mutations (indicated in green font) in the C-terminal hydrophobic domain as GFP fusions. (E) After agroinfiltration of C-terminal mutants of CP,
GFP signals were observed in the epidermal cells using confocal microscopy at 3 dpi. Bar, 15 �m.
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C6Thr and pF2-C3Thr was near wt levels (Fig. 8B). To verify the
packaging efficiency and specificity, encapsidated RNA was ex-
tracted from purified virions and subjected to analytical gel elec-
trophoresis for visualization by ethidium bromide staining, fol-
lowed by Northern blot hybridization. The results are shown in
Fig. 8C and D. Ethidium bromide staining revealed that wt FHV
virions packaged F1 and F2 exclusively, a profile identical to that
observed in Drosophila cells (26), and packaging of no other RNAs
was evident (Fig. 8C). In contrast, virions of mutant CP ARM1&2
R¡A packaged a significantly lower amount of F1 and F2 and a
faster-migrating heterogeneous population of RNAs varying in
size (Fig. 8C). On the other hand, unlike virions of CP ARM1&2
R¡A, those of CP C-6Thr and CP C-3Thr packaged detectable
levels of progeny F1 and F2 in addition to a faster-migrating het-
erogeneous RNA population (Fig. 8C). To identify the nature of
faster-migrating RNA, virion RNA was subjected to Northern blot
hybridization using a mixture of riboprobes complementary to
full-length F1 and F2. Northern analysis revealed that FHV RNA
specific riboprobes hybridized to full-length F1 and F2 (Fig. 8D),
suggesting that faster-migrating heterogeneous RNA is not of viral
but of cellular origin. A comparative quantitative analysis of FHV
RNA accumulated in total RNA preparations versus those pack-
aged further revealed that mutant virions of pF2-ARM1&2 R¡A
packaged the FHV RNA poorly due to the absence of the N-prox-
imal ARM region required for viral RNA binding. As expected, the
presence of the N-proximal ARM region in the mutants CP
C-6Thr and CP C-3Thr promoted near wt level packaging of F1

and F2. However, despite variations in replication and packaging
efficiency, the presence of cellular RNA suggested that both N-
proximal ARM domains are required not only for RNA binding
but also for its interaction with protein A and that the C-proximal
domain required for precise subcellular localization of CP is im-
portant for FHV packaging specificity.

DISCUSSION

The major impetus for evaluating the interaction between viral
replicase and CP leading to packaging specificity in RNA viruses
was based on the following two observations. First, in FHV and
BMV, the packaging specificity is dependent on the translation of
CP from a replication-derived mRNA. Second, packaging exhib-
ited by CP expressed in the presence of replication is clearly dis-
tinct from packaging exhibited in its absence. Therefore, we hy-
pothesize that, before encapsidation, a physical interaction
between viral replicase and CP is obligatory for dictating packag-
ing specificity. Testing this hypothesis by the application of
agroinfiltration and BiFC in combination with fluorescent cellular
marker proteins has revealed that packaging specificity is depen-
dent on a physical interaction between protein A and CP occur-
ring at the mitochondrial sites of replication promoted by either
the ARM1 or the ARM2 region of the CP (Fig. 5 and 8).

Viral CPs have evolved to selectively package their genomes in
the presence of a large pool of cellular RNAs. RNA-binding motifs
such as ARMs found in several viral CPs (32, 41) in cooperation
with the origin-of-assembly sequences (OAS) in viral nucleic acids

FIG 8 Effect of the N- and C-terminal mutants of CP on replication and packaging. (A) Northern blot analysis of FHV RNA replication in plant cells. The
agrotransformant of F1 was mixed with either wt F2 or the indicated mutants and infiltrated into N. benthamiana. At 5 dpi, the total RNAs were extracted and
subjected to Northern blot hybridization with riboprobes specific for F1 and F2. The FHV RNA accumulation levels shown below the Northern blot were
normalized against the wt as 100%. (B) Virion yield. FHV virions were purified from the infiltrated leaves, and the yield was quantitated and normalized against
the wt as 100%. The data shown represent averages of three independent virion preparations. (C) Analyses of RNAs extracted from purified FHV virions. At 5 dpi,
virions were purified from the infiltrated leaves, and encapsidated RNA was isolated. Virion RNA was subjected to 1% agarose electrophoresis and visualized by
staining with ethidium bromide. An asterisk indicates a heterogeneous population RNA of cellular origin. (D) The RNA profile shown in panel C was subjected
to Northern blot hybridization with a mixture of riboprobes complementary to full-length F1 and F2. The positions of F1, F2, and sgF3 are shown to the right.
In panel A, rRNA indicates a loading control. Encapsidated FHV progeny was quantitated as described above.
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have been shown to contribute to assembly and genome packag-
ing (31). However, other evidence argues that the presence of
either ARM or OAS is not always sufficient to guarantee assembly
or packaging. For example, a BMV CP variant with an unaltered
N-proximal ARM that was defective in �-hexamer formation
failed to assemble in vitro; however, the environment provided by
in planta expression of the �-hexamer mutant CP via replication-
dependent transcription and translation supported in the assem-
bly of RNA containing virions indistinguishable from those of the
wt (12). Furthermore, similar to BMV and FHV, packaging of
viral progeny by a CP translated from a replication-derived
mRNA was demonstrated in other RNA viruses such as poliovirus
(30), Kunjin virus (20), and Venezuelan equine encephalitis virus
(44). Collectively, these observations suggested that some macro-
molecular interactions occurring in vivo at or near a subcellular
compartment that are integral to replication are likely to also play
an important role in controlling packaging specificity. Clearly, in
the present study, BiFC assays have not only revealed one such
macromolecular interaction but also identified where the interac-
tion occurs, i.e., the interaction of CP with protein A occurs on the
outer membranes of mitochondrial sites of replication.

The question that now needs to be addressed is how FHV CP is
trafficked to the mitochondria. Based on the subcellular localiza-
tion of FHV CP examined using a replication-dependent expres-
sion system, Venter et al. (43) proposed that trafficking of CP to a
mitochondrial site of replication is mediated through the ARM
region. Since FHV CP has no recognizable mitochondrial local-
ization signals and considering our observation that ectopic ex-
pression of FHV CP with an intact ARM was predominantly lo-
calized on the ER (Fig. 4B), it is difficult to envision how the ARM
could direct trafficking of CP to mitochondria. Since protein A has
a mitochondrial localization signal (29), it is more logical to pro-
pose that trafficking of CP to mitochondria is mediated through a
protein A-CP interaction, as demonstrated in the present study
(Fig. 2 and 5). Our results also show that apart from a protein A
and CP interaction, another characteristic feature integral to
packaging is the ER localization of CP mediated by its C-proximal
hydrophobic domain (Fig. 7). Subcellular localization of CP per-
formed in a replication-based expression system revealed that de-
letion of the C-proximal region of CP (referred as 	�381) encom-
passing the hydrophobic domain did not result in significant
reduction in mitochondrial colocalization of CP and protein A
(43). Since FHV infection results in dramatic cytopathological
changes that include mitochondrial clustering (28) and significant
retraction of the ER toward the perinuclear region (43), the innate
characteristic of subcellular localization regulated by the C-prox-
imal domain was masked in a replication-dependent expression
system. Indeed, the precise role of the C-proximal domain in reg-
ulating the subcellular localization of CP became apparent when
either the wt FHV CP or a mutant lacking the C-proximal domain
was compared in ectopically expressed N. benthamiana cells, i.e.,
wt CP displayed a punctate distribution on the ER, whereas mu-
tant CP was distributed throughout the cytoplasm (Fig. 7).

In conclusion, in addition to the results presented here, BiFC
has been used successfully for evaluating the interactions of HIV
Gag proteins (6), herpes simplex virus glycoproteins (4), and
paramyxovirus fusion and hemagglutinin-neuraminidase pro-
teins (11). Therefore, the BiFC approach can be extended to test
whether packaging specificity regulated by a replicase-CP interac-

tion is widely conserved in other viruses with positive-sense RNA
genomes.
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